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Mercury is present in the earth’s crust and is methylated by bacteria in aquatic environments to
methylmercury (MeHg). It is then concentrated by the food chain so predatory fish and sea
mammals have the highest levels. Thus, consuming seafood leads to exposure. MeHg readily
crosses the placenta and the blood-brain barrier and is neurotoxic. The developing fetal nervous
system is especially sensitive to its effects. Prenatal poisoning with high dose MeHg causes
mental retardation and cerebral palsy. Lower level exposures from maternal consumption of a
fish diet have not been consistently associated with adverse neurodevelopmental outcomes.
However, most studies have considerable uncertainty associated with their results. Two large
controlled longitudinal studies of populations consuming seafood are underway that are likely to
determine if any adverse effects can be identified. No adverse associations have been found in
the Seychelles, where exposure is mainly from fish consumption. In the Faroe Islands where
exposure is primarily from consumption of whale meat and not fish, adverse associations have
been reported. The Seychelles population consumes large amounts of marine fish containing
MeHg concentrations similar to commercial fish in the United States. Current evidence does not
support the hypothesis that consumption of such fish during pregnancy places the fetus at
increased neurodevelopmental risk. — Environ Health Perspect 106(Suppl 3):841-847 (1998).
http./fehpnet1.niehs.nih.gov/docs/1998/Suppl-3/841-847 myers/abstract.htm/
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Introduction

Prenatal exposure to methylmercury
(MeHg) is primarily dietary (). MeHg is
present in all fresh and marine fish, and
pregnant women who consume a high fish
diet expose their fetus to this neurotoxin.
Several episodes of fetal MeHg poisoning
have been reported (2-5), and confirm
that the developing fetal brain is especially
susceptible. The clinical findings following
poisoning are microcephaly, cerebral palsy,
seizures, and mental retardation. In all
poisonings the source was dietary, but only
in Minamata (6) and Niigata (7), Japan,
was fish consumption involved. The fish

consumed in Japan contained very high
MeHg levels from local pollution. In
Minamata, Japan, children showed severe
neurodevelopmental impairment even
though the mothers experienced minimal
or no clinical symptoms (2). No other chil-
dren symptomatic with fetal poisoning
from fish consumption have been described
since the Minamata and Niigata episodes.
Following an outbreak of MeHg
poisoning in Iraq, a dose-response relation-
ship was determined, indicating that expo-
sures in the range of 10 to 20 ppm might
adversely affect the fetus (8). This level of
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exposure occurs regularly in populations
that consume large amounts of fish (9).

Some studies undertaken in populations
consuming large amounts of fish found an
association between fetal exposure and out-
come measures (3,8,10-14), but others did
not (15-20). In 1990 an expert committee
for the World Health Organization
reviewed the available evidence and con-
cluded “a prudent interpretation of the
Iraqi data implies that a 5% risk may be
associated with a peak mercury level of
10-20 pg/g in the maternal hair” (7).

In this paper we review fetal MeHg
exposure and discuss the outcome measures
used to determine if an association actually
does exist in fish-eating populations.

Environmental Mercury

Inorganic mercury occurs naturally in the
earth’s crust and is widespread in the envi-
ronment. Volcanic emissions contribute to
mercury in the atmosphere, as does human
activity such as incineration of household
waste, burning of fossil fuels, cremation, and
smelting (1). Mercury use in the electrical
industry, medical and laboratory instrumen-
tation, paper mills, the extraction of gold,
and dental amalgams also contributes to its
presence in the environment (21).

In aquatic environments common
bacteria methylate mercury. Human activi-
ties such as dams that enlarge aquatic envi-
ronments leach mercury from the earth
and facilitate both methylation and the
movement of MeHg into the food chain
(22). After MeHg enters living organisms
it is passed up the food chain, and animals
at the top such as predatory fish and large
sea mammals accumulate the highest levels.

Most marine fish contain less than 0.5
ppm MeHg, but sharks, sailfish, marlin,
and other billfish frequently have levels of
over 1 ppm (23). Marine mammals such as
dolphins and whales have even higher lev-
els (24). When local waters are polluted

. with MeHg, levels in both fresh and

marine fish may be much higher. Fish from
Minamata Bay was reported to contain up
to 40 ppm and above 10 ppm in polluted
Canadian waters (25,26). Individuals who
eat fish regularly even when there is no
local pollution can have hair mercury levels
ranging up to 30 ppm or higher (1,9).

Methylmercury
in the Human Body

Dietary MeHg in the human is almost
totally absorbed in the gastrointestinal tract
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and rapidly enters the bloodstream (7).
About 95% is taken up by red blood cells,
and then distributed throughout the body
over the next 3 to 4 days. The brain is the
primary target organ. In pregnant women,
MeHg readily crosses the placenta and has
a high affinity for fetal hemoglobin. Levels
in fetal blood are about 25% higher than
in the mother (27).

In adults, the neurotoxicity includes
neuronal destruction, with the early effects
predominantly on the occipital cortex and
cerebellum (28). However, in the fetus,
exposure leads to diffuse disruption of nor-
mal developmental processes such as neu-
ronal migration and organization of gray
matter (29). In experimental animals, neu-
rotoxicity has been reported with measured
levels of total mercury in brain as low as
1800 parts ppb (30,31). Neuropathologic
studies in the Seychelles of neonates dying
of illnesses not believed to be related to
mercury exposure found brain mercury lev-
els up to 295 ppb (32). No neuropatho-
logic changes were associated with MeHg
exposure at that level.

Measuring Human Exposure

Prenatal MeHg exposure is generally
determined by measuring total mercury in a
segment of the mother’s hair that was grow-
ing during pregnancy. MeHg enters hair fol-
licles in direct proportion to its level in blood
and is incorporated into the hair shaft (7).
Once in the hair shaft, the mercury content
does not appear to change. Inorganic mer-
cury such as the vapor released from dental
amalgams does not appear to be taken up by
hair follicles or incorporated into the hair
shaft (21). Human hair grows at about 1.1
cm per month, and the segment that was
growing during pregnancy can be deter-
mined with some accuracy. By measuring
the mercury in short segments of hair, the
exposure history for the entire pregnancy can
be recapitulated.

Fetal exposure can also be determined
by measuring total mercury in cord blood
samples at birth. Blood provides an excel-
lent measure of recent exposure. After fish
or seafood has been consumed, the blood
level of mercury rises then decreases, with
an average half-time of 52 days (33,34).
Consequently, exposure levels earlier in
pregnancy remain unknown.

Multiple analytic methods have been
used to determine the mercury content of
various tissues, but cold-vapor atomic
absorption (CVAA) measuring total mer-
cury in maternal hair has been the stan-
dard in nearly all clinical studies. With
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CVAA both the inorganic and organic
components can be determined. Over
80% of mercury in human hair is organic
(35). Neuropathologic evidence confirms
that there is a good correlation between
levels of total mercury measured in
neonatal brain and in the corresponding
maternal hair (36).

Human Effects of
High-Level Exposure

The toxicity of MeHg in adults was not
fully appreciated until 1940, after an
industrial poisoning (37). Although poi-
soning with MeHg is uncommon, a num-
ber of episodes have occurred (2-5,38).
The poisonings that occurred at Minamata
and Niigata, Japan, and in Iraq led to
severe neurologic damage and sometimes
death in both adults and children (3,8,28).
Prenatal MeHg poisoning, or Minamata
disease, clinically presents as mental retarda-
tion, cerebral palsy, microcephaly, and
seizures (2). The fetus appears especially sen-
sitive to this toxin. During the Minamata
outbreak a number of mothers had only
transient paresthesias or were asymptomatic
even though the children were severely
affected (2).

Only one study examining milder
effects of fetal poisoning was reported from
Japan (39). Harada reported an increased
incidence of mental retardation, sensory
disturbances, and dysarthria in school chil-
dren from the Minamata area compared to
other areas in Japan. The methodology
used in that study was not reported.

After the Iraq poisoning of 1971 to
1972, children exposed prenatally were
identified. Over 80 children who were in
utero when their mothers consumed bread
made from MeHg-treated seed grain were
examined (3). The poisoning involved a
high level of exposure over a period of 2 to
3 months. This acute exposure produced
sharp peaks of mercury when the maternal
hair was measured longitudinally. The
index of exposure used in the Iraq studies
was the highest level of total mercury mea-
sured (8). Two neurodevelopmental end
points were determined: motor retardation
(defined as the age mothers said their child
started walking), and a score of neurologic
impairment derived from findings on the
neurologic examination (3). The most
prominent abnormal findings on the neu-
rologic examination were an increase in
muscle tone and deep tendon reflexes, and
extensor plantar responses. A dose—response
relationship for MeHg exposure was
described based on these findings. That

relationship suggested that fetal exposure
in the maternal hair mercury range of 10 to
20 ppm may be associated with clinically
detectable findings (8,40).

There was considerable uncertainty
about the lowest level at which the
increased risk might occur as only three
children had delays in walking and six had
abnormal neurologic examinations with an
MeHg exposure below 50 ppm in maternal
hair (8,40,41). Of those children, three
with abnormal neurologic examinations
had exposure levels of 1 ppm (3,8).
Because of the small number of abnormal
subjects in the low-exposure range, it was
not possible to tell if the relationship was
continuous or if a threshold was present.

The confidence limits for the Iraq
analysis were sensitive to the background
response rate. Because the true background
rate of neurodevelopmental delay unrelated
to MeHg exposure in the Iragi population
was unknown, the analysis was done con-
sidering several background rates. When a
zero background rate of delayed walking
was assumed, the confidence interval for the
estimated lowest effect level was 7.3 to 14
ppm. If one assumed a 4% background
rate, the confidence interval was 9.0 to 190
ppm (8). Using an estimated background
level of 9% for abnormal neurological signs,
the confidence interval was 10 to 287 ppm.
All of the analyses had lower confidence
limits that included the range of MeHg
exposures previously reported in human
populations that regularly consume fish.

Human Effects of Exposure
from Fish Consumption

Exposure to MeHg occurs in all individuals
who eat fish or fish products. Clinically
diagnosed poisoning from consuming fish
has been reported only from Japan where
MeHg levels in fish were very high. The
dose—response analysis from Iraq, however,
clearly raised concern that lower prenatal
exposures might be associated with adverse
neurodevelopmental effects. Consequently,
studies were undertaken to see if adverse
effects could be confirmed in such popula-
tions. Initial studies from Canada and New
Zealand (10-12), and more recently from
the Faroe Islands (13,14), have supported
the Iraq conclusions. However, studies from
Peru and the Republic of Seychelles have
not found adverse associations (15-19).
The studies have varied in multiple ways
including the end points evaluated. Table 1
lists the general categories of end points
evaluated. Those reported by the authors to
show an association with prenatal MeHg
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Table 1. Categories of tests used to detect an association between prenatal MeHg exposure and neurodevelop-
ment in reported studies. Further details and references are in the text.

New Faroe Seychelles
Testing category Iraq Canada Zealand Peru Islands Main Pilot
Neurologic + + - - - - -
Developmental milestones + - - -
Developmental screening - + - +
Psychological + + - +
Academic/Educational - -
Behavioral +
Neuropsychologic + +
Neurophysiologic +

+, studies in this category were done and an association with prenatal MeHg exposure was reported by the authors;
—, studies in this category were done and no association with prenatal MeHg exposure was reported by the authors.

exposure are marked. No consistent pattern
of associations is readily apparent.

Neurologic Testing

The neurologic examination readily detects
the consequences of Minamata disease.
Findings include microcephaly, increases in
muscle tone and deep tendon reflexes, and
extensor plantar responses. It was reasonable
to suspect that minor degrees of each of
these findings might be present with expo-
sure to lower levels of MeHg, and in Iraq an
association was present. Subsequent studies
from Canada, Peru, and the Seychelles
included a standard neurologic examination
in an effort to confirm the Iraq findings.

The neurologic examination of children
and its interpretation is a specialized area.
A pediatric neurologist should perform the
evaluation, as neurologic findings differ in
normal children depending upon the age at
evaluation, and abnormalities can be dif-
ficult to interpret. For example, pediatric
neurologists consider extensor plantar
responses normal up to 2 years of age (42).
They also consider subtle differences in
muscle tone and deep tendon reflexes diffi-
cult to recognize in young children.

In Iraq, Canada, Peru, and the
Seychelles, a pediatric neurologist per-
formed the neurologic examination. The
age at which the children were examined
varied in each study. In the Seychelles,
children were examined between 6 and 105
weeks of age in the pilot study, but in the
main study all were examined during the
6th month of life. In the other studies,
examinations were generally performed
from 4 months up to several years of age.
In both Peru and the Seychelles the neuro-
logical examinations were done by the
same neurologic team that examined the
children in Iraq (15,16,18).

The Canadian study included a team of
four pediatric neurologists (12). They
found no association between neurologic
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abnormalities in general and the level of
prenatal exposure to MeHg. However,
when males were evaluated separately, an
association was seen between exposure and
changes in muscle tone and deep tendon
reflexes. This association was present only
when both increases and decreases in mus-
cle tone and deep tendon reflexes were
combined. The authors noted that their
results differed from those in Iraq, even
though there was an association with the
neurologic findings (12).

No association was found between
abnormal neurologic findings and prenatal
MeHg exposure in the Seychelles (16,18).
During evaluations of the main cohort, the
pediatric neurologist made a special effort
to record subtle findings, but no associa-
tion with exposure was detected (18).

In New Zealand and the Faroe Islands, a
variation of the standard neurologic testing
was included (10,13,14). In New Zealand
the visual and sensory systems of the chil-
dren were tested clinically by a nurse when
the children were 4 years of age. Vision was
tested using the Sheridan—Gardner Letter
Matching Test and the Stycar Miniature
Toy Test. Sensory tests included finger
identification, localization of tactile stimuli,
and temperature recognition. No associa-
tion between either visual or sensory testing
and prenatal MeHg exposure was found.

In the Faroe Islands, a functional
neurologic test developed by Lier and
Michelsen (43) was administered. An
experienced pediatrician gave the test
when the children were 7 years of age
(13,14). No association between MeHg
exposure and test items was reported
(13,14). Some of the functional neuro-
logic tests (diadochokinesia, reciprocal
coordination, finger opposition, catching a
ball, and finger agnosia) were associated
with the neurobehavioral tests (finger tap-
ping, continuous performance, and
hand-eye coordination).

The association between neurologic
findings and prenatal MeHg exposure has
not been confirmed in fish-eating popula-
tions even when examinations were per-
formed carefully by experienced clinicians
under optimum circumstances.

Developmental Milestones

Delayed developmental milestones such as
the age at which a child begins to sit with-
out support, crawl, take steps alone, or say
words are well-known markers of develop-
mental problems. Milestone data increase
in reliability the closer it is obtained to the
time that the child achieves the skill. In
Iraq, there was an association between pre-
natal MeHg exposure and whether the
child first walked before or after 18
months of age. The data for that analysis
were collected when the children’s mean
age was 30 months (3). Two subsequent
studies have examined developmental
milestones in relation to prenatal MeHg
exposure (20,44).

In the Faroe Islands the ages at which
children first sat without support, crept, and
stood with support were examined (44).
Data were obtained from the district health
nurses who visited the children regularly
during the first year of life. The authors
reported that children with higher mercury
concentrations in their hair at 12 months of
age reached these milestones earlier. They
attributed the precocious development to
the benefits of breastfeeding,

In the Seychelles, the age at which
children first walked independently and
said two words other than “mama” and
“dada” was examined (20). These were the
same two end points assessed in the Iraq
study. Data on development were obtained
from mothers when the children were eval-
uated at 19 months of age. Developmental
milestones in this cohort were also preco-
cious. In one model that included an inter-
action between MeHg and gender, the
interaction was not significant, but in
males there was an association between
exposure and age at walking. The associa-
tion was not present when statistical out-
liers were excluded. Seychellois males were
precocious in walking (mean age 10.6
months vs 11.7 months in U.S. males), but
a 10-ppm increase in maternal hair mer-
cury was associated with a 2-week delay in
walking. The authors concluded that there
was no definite association between MeHg
exposure and either milestone. No studies
in fish-eating populations have confirmed
the delays in developmental milestones
found in Iraq.
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iologic and
li:vnoral Testing

In the Faroe Islands, neurobehavioral and
neurophysiologic testing were conducted
when study children were examined at 7
years of age (13,14). Visual and auditory
evoked potentials, postural stability, and
variability of the R-R interval on electro-
cardiograms were measured. Postural stabil-
ity, visual evoked potentials, and cardiac
variability was reported to have no associa-
tion with prenatal MeHg exposure (14).
However, associations were found between
fetal MeHg exposure and brainstem audi-
tory evoked potentials. There were delays in
peaks III and V at higher MeHg exposures,
but no association with interpeak latencies.
The neurobehavioral tests were part of
a computerized test battery called the
Neurobehavioral Examination System
(NES). The NES assesses motor speed, sus-
tained attention, and motor coordination,
and includes finger tapping and tests of
continuous performance and hand-eye
coordination. In addition, the Functional
Acuity Contrast Test (FACT), a test of
visual contrast sensitivity, was adminis-
tered. There was an association between
the FACT and tests on the NES (73).
Dahl and colleagues (13) reported associa-
tions with fetal exposure as follows “none
of the above predictors was clearly related
to prenatal mercury exposure (p<0.05).
On the other hand, increased mercury
exposure was associated with decreased per-
formance on all NES parameters, in most
cases statistically significant.” The authors
cautioned (73) that “...the deficits associ-
ated with a doubling of mercury exposure
are limited...”(13). They also stated
“...PCB [polychlorinated biphenyl] expo-
sure cannot so far be ruled out as a poten-
tial underlying cause of the observed
association between prenatal mercury
exposure and neurobehavioral dysfunc-
tion...” Grandjean and colleagues (/4)
reported the results of NES testing in more
detail. They found that the maximum
number of finger taps in 15 sec was
inversely associated with MeHg exposure,
as was the average reaction time and the
total number of missed responses on the
continuous performance task. No associa-
tion with the hand—eye coordination task
was present. The sophisticated neurophysi-
ologic and neurobehavioral test battery
used in the Faroe Islands was reported
(13,14) to show an inverse association
between prenatal MeHg exposure and both
neurophysiologic and neurobehavioral test
outcomes. The Faroe Islands diet also
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exposes residents to PCBs, but the authors
measured PCBs and considered them in
their analyses. They concluded that the
associations were mainly with MeHg.

Developmental Screening Tests

Developmental screening tests were
included in the New Zealand, Canadian,
and Seychelles studies. All three studies used
either the original or the revised Denver
Developmental Screening Test (DDST or
DDST-R). The New Zealand investigators
examined 31 children whose mothers had a
hair mercury value during pregnancy of 6
ppm or greater, and a reference group of 30
children whose motherts’ hair mercury values
were less than 6 ppm (10). The authors
reported 52% of the high group and 17% of
the low group had abnormal or suspect
scores on the DDST, and that an associa-
tion between DDST scores and fetal expo-
sure appeared to be present (10). The high
percentage of questionable and abnormal
scores, the mixing of ethnic groups, and the
nonstandard grouping of the scores raised
questions about this association, as discussed
previously (15,16,18).

In the Seychelles study, an association
between fetal MeHg exposure and scores
on the DDST-R was found in the pilot
study (16). This association was greater in
males and when the children’s age at evalu-
ation was younger. In the main study when
evaluations were conducted under more
optimal conditions, no association was pre-
sent (18). In the Canadian study, no asso-
ciation between the DDST scores and
MeHg exposure was reported (12).

Psychologic Testing

Experimental animals exposed to MeHg at
relatively low doses have shown global
cognitive delays, visual perceptual prob-
lems, and alterations in visual memory
(31,45,46). Psychologic testing examines
cognitive abilities and has been an impor-
tant part of test batteries. In New Zealand,
at 6 years of age the children were given
psychologic tests that examined language
development, intelligence, and fine and
gross motor coordination (/7). The test
battery included the Test of Language
Development, the Peabody Picture
Vocabulary Test, the McCarthy Scales of
Children’s Abilities (MSCA), and the
Revised Wechsler Intelligence Scale for
Children (WISC-R).

The authors reported normal values for
all the administered tests. However, they
noted an association between prenatal
MeHg exposure and decreased performance

on the tests. The child’s ethnic background
and social class also influenced test results.
The authors stated that at an MeHg expo-
sure of 13 to 15 ppm in maternal hair (cor-
responding to peak hair mercury values of
about 20-25 ppm) the child’s performance
on the tests started to decline. This level of
exposure was similar to the one found in
the Iraq dose-response relationship.
Children with questionable or abnormal
scores on the DDST at 4 years of age
tended to have lower scores on psychologic
testing at 6 years of age. However, differ-
ences among ethnic groups and the small
sample size make the results from New
Zealand difficult to interpret.

During the Seychelles pilot study,
children were given the MSCA and the
Preschool Language Scale (PLS) at approxi-
mately 66 months of age (/7). On analysis
an association was found between prenatal
MeHg exposure and four of the seven end
points from these tests. The General
Cognitive Index and Perceptual Performance
scales from the MSCA, and the Total
Language and Auditory Comprehension
scores from the PLS showed an association.
The significance of three associations was
dependent on statistical outliers and influ-
ential points, and only Auditory Compre-
hension from the PLS was associated when
these were removed.

During the 6.5-month enrollment of the
main cohort in Seychelles, children were
tested for visual novelty preference using the
Fagan procedure (17). Deficits in novelty
preference had previously been noted with
increasing prenatal MeHg exposure in
experimental animals (47,48). During the
19- and 29-month evaluations, the Bayley
Scales of Infant Development (BSID) were
administered (19). At 66 months of age,
children were tested using the MSCA and
the Bender Visual Gestalt Test (Bender).
Through 29 months of age, no association
between prenatal MeHg exposure and visual
recognition memory or the Mental or the
Psychomotor scale from the BSID was
found. The results of the 66-month testing
have not been published in detail, but analy-
ses have been completed and no negative
correlation with prenatal MeHg exposure

was found (49).

Educational and Academic
Achievement Testing

In New Zealand and the Seychelles,
educational testing was included in the
test battery, In New Zealand at 6 years of
age, the children were given three tests of
academic attainment that examined the
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components of reading, word recognition,
and number concepts (11). The tests used
were the Clay Diagnostic Survey, the Burt
Word Recognition Test, and the Key Math
Diagnostic Arithmetic Test. No association
between scores on these outcomes and
prenatal MeHg exposure was reported.

In the Seychelles, during both the pilot
and main studies, the children were given
the Woodcock-Johnson Test of Achieve-
ment when they were 66 months of age
(17,49). This test examines acquisition of
language and numerical concepts. No
association with MeHg was found.

Behavioral and
Neurobehavioral Testing

In New Zealand, the Faroe Islands, and the
Seychelles, specific behavioral testing was
conducted. In New Zealand at 6 years of
age, the children were given the Everts
Behavior Rating Scale (11). This test was
widely used at the time in New Zealand
and was completed by the child’s teacher.
No statistically significant differences were
found between scores on this test and pre-
natal MeHg exposure. However, children
with higher MeHg exposure generally had a
higher proportion of low scores, especially
for adaptability and task application.

During the Seychelles main study, six
items from the Infant Behavior Scale of the
BSID were recorded during the 29-month
evaluation (19). On one item the tester rated
the activity level of the child during the
examination. Activity level scores showed an
inverse association with prenatal MeHg
exposure. Changes in activity were only pre-
sent in males. The interpretation of this find-
ing was unclear. When the main cohort
children were 66 months of age, each parent
or caregiver completed the Child Behavior
Checklist. This test measures a number of
social and functional behaviors; no associa-
tion with exposure was present (£9).

In the Faroe Islands the Nonverbal
Analogue Profile of Mood States was
administered during the 7-year evaluation
(14). This test measures a child’s ability to
recognize different moods. No association
with MeHg exposure was found.

Neuropsychologic Testing

In the Faroe Islands and the Seychelles,
neuropsychologic tests were administered
to the children. Neuropsychologic tests
measure specific cognitive functions such
as short- or long-term memory, attention,
etc. Some tests, such as the MSCA, can
provide both overall cognitive assessment
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and neuropsychologic information about
specific cognitive functions. Neuropsycho-
logic testing refers mainly to how one
interprets test results, and subscales from
the MSCA provide insight into specific
cognitive strategies. Neuropsychologic test-
ing can begin at about 3 years of age, but is
most reliably assessed after 5 years of age.

In the Faroe Islands a variety of
neuropsychologic tests were included in
the evaluations (/4). From the WISC-R,
the digit span, similarities, and block
designs were given. The Bender, Boston
Naming Test (BNT), and California
Verbal Learning Test (CVLT) were also
administered. The authors reported inverse
associations between prenatal MeHg expo-
sure (measured in cord blood) and test
components from the WISC-R, Bender,
BNT, and CVLT. When maternal hair
mercury levels during pregnancy were used
as the exposure index, no associations with
outcomes were significant.

Discussion

The dose—response analysis from Iraq
predicted that prenatal MeHg exposures in
the range achieved by regular consumption
of fish might affect fetal neurodevelopment.
That dose—response analysis was based on
delays in developmental milestones and
abnormalities on the neurologic examina-
tion. Longitudinal studies in both the Faroe
Islands and the Seychelles have reported that
developmental milestones in their popula-
tions are advanced (20,44). Both cohorts
exhibited precocious motor development.

Poisoning by MeHg can delay develop-
mental milestones, but exposure to lower
doses may be offset by other factors.
Grandjean and colleagues (44) proposed
that breastfeeding might confer benefits
that counteract any deleterious effects of
MeHg exposure. At lower doses other
dietary constituents such as selenium may
also affect the toxicity of MeHg (50).
Alternatively, the exposure levels achieved
by consuming fish may have no effect on
developmental milestones.

Test batteries have become increasingly
more sophisticated in efforts to identify
adverse effects. Reports from the Faroe
Islands indicate that neurobehavioral, neu-
ropsychologic, and neurophysiologic tests
show associations with prenatal MeHg
exposure. These findings are intriguing,
but their relevance to other populations is
unclear and they have not been replicated.
In the Faroe Islands, exposure to MeHg
was primarily from consuming whale meat

and blubber, dietary items not commonly
consumed in most countries. Whales
contain significant amounts of PCBs and
other neurotoxicants, and the MeHg con-
centration in their meat is several times
that of most fish. Why these associations
are present using mercury values from cord
blood, but not from maternal hair, is puz-
zling (14). Mercury values in cord blood
provide excellent data on recent exposure,
but no information about levels earlier in
pregnancy. Whale meat contains about 1.6
ppm MeHg and an equal amount of inor-
ganic mercury (24). A small number of
whale meals over a short time period dur-
ing pregnancy could produce peaks of
exposure that were not apparent at the
time of delivery.

The Republic of Seychelles appears to
provide a more appropriate sentinel popula-
tion for the United States. The MeHg expo-
sure in the Seychelles is believed to be only
from fish consumption, and the fish con-
tains concentrations of MeHg similar to
those found commercially in the United
States. The Seychellois do not consume sea
mammals and PCB levels are low. The
exposure to MeHg from fish in the
Seychelles is similar to that of U.S. con-
sumers. However, the average Seychellois
consumes fish at 12 meals each week (51),
and mercury concentrations in maternal
hair are 10 to 20 times those of the U.S.
population (49). The main Seychelles study
has found no adverse associations with this
degree of MeHg exposute from fish through
66 months of age.

Conclusions

Current evidence does not support the
hypothesis that consumption of even large
amounts of fish during pregnancy places the
fetus at neurodevelopmental risk from
MeHg exposure. Moreover, fish is an impor-
tant nutritional source in many parts of the
world. It provides important components for
brain development such as calories, omega-3
fatty acids, and antioxidants such as sele-
nium and vitamin E (50). Wheatley and
Paradis (52) have also pointed out the
importance of the environment and tradi-
tional lifestyles such as fishing to the social,
cultural, and economic well-being of indige-
nous people in Canada. In addition, there is
a growing body of evidence that fish con-
sumption has cardiovascular protective ben-
efits for adults (53,54). Concern about fetal
exposure to MeHg from fish should be
tempered by its importance to brain
development and other benefits.
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